Gravity-Independent Locomotion: Dynamics and Position-Based Control of Robots on Asteroid Surfaces
InΒ Β recentΒ Β years,Β Β theΒ Β scientiο¬cΒ Β communityΒ Β hasΒ Β hadΒ Β anΒ Β increasedΒ Β interestΒ Β inΒ Β exploringΒ theΒ asteroids ofΒ theΒ solarΒ systemΒ (JAXA/ISAS,Β Β 2003;Β JHU/APL,Β Β 1996;Β NASA/JPL,Β Β 2007).Β TechnologicalΒ advancesΒ haveΒ enabledΒ mankindΒ forΒ theΒ ο¬rstΒ timeΒ toΒ takeΒ aΒ closerΒ lookΒ atΒ theseΒ smallΒ solarΒ systemΒ objectsΒ throughΒ sensorsΒ andΒ instrumentsΒ ofΒ roboticΒ deepΒ spaceΒ probes.Β However,Β mostΒ ofΒ theseΒ spaceΒ probeΒ missionsΒ haveΒ focusedΒ onΒ theΒ reconnaissance ofΒ theΒ asteroidsβΒ surfacesΒ andΒ theirΒ compositionalΒ analysisΒ fromΒ aΒ distance.Β LittleΒ attentionΒ hasΒ beenΒ givenΒ toΒ locomotionΒ onΒ theirΒ surfacesΒ withΒ aΒ mobileΒ roboticΒ system,Β dueΒ toΒ theΒ challengingΒ gravityΒ conditionsΒ foundΒ inΒ theseΒ smallΒ solarΒ systemΒ bodies. InΒ smallΒ bodiesΒ likeΒ asteroids,Β theΒ gravitationalΒ ο¬eldsΒ areΒ substantiallyΒ weakerΒ thanΒ thoseΒ ofΒ EarthΒ orΒ Mars,Β thereforeΒ theΒ likelihoodΒ ofΒ aΒ robotβsΒ unintentionalΒ collisionΒ withΒ theΒ surfaceΒ whileΒ attemptingΒ aΒ movementΒ isΒ substantiallyΒ higher.Β Β Β InΒ oneΒ ofΒ theΒ latestΒ missions,Β the JapaneseΒ HayabusaΒ spacecraftΒ carriedΒ onboardΒ aΒ smallΒ robotΒ namedΒ MINERVAΒ (Yoshimitsu etΒ al.,Β 2001)Β toΒ beΒ deployedΒ andΒ usedΒ toΒ exploreΒ theΒ asteroidΒ surface.Β TheΒ robotΒ wasΒ designedΒ withΒ aΒ singleΒ reactionΒ wheel,Β locatedΒ insideΒ ofΒ it,Β toΒ produceΒ theΒ necessaryΒ inertialΒ reactionΒ to move.Β ButΒ withΒ thisΒ systemΒ theΒ locationΒ ofΒ theΒ robotΒ whenΒ theΒ motionΒ isΒ dampedΒ outΒ isΒ veryΒ challengingΒ toΒ predictΒ orΒ control.Β Subsequently,Β inΒ orderΒ toΒ maximizeΒ theΒ scientiο¬cΒ returnΒ fromΒ anyΒ given missionΒ onΒ anΒ asteroidβsΒ surface,Β futureΒ missionsΒ mustΒ haveΒ theΒ abilityΒ toΒ conductΒ stableΒ mobilityΒ andΒ accurateΒ positioningΒ onΒ theΒ roughΒ terrain. InΒ theΒ roboticsΒ ο¬eld,Β limbedΒ locomotionΒ isΒ broadlyΒ recognizedΒ asΒ superiorΒ inΒ itsΒ capabilityΒ toΒ traverseΒ terrainsΒ withΒ irregularitiesΒ suchΒ asΒ obstacles,Β cliffsΒ andΒ slants.Β ExoticΒ typesΒ ofΒ wheeledΒ roversΒ (BaresΒ etΒ al.,Β 1999;Β Wilcox &Β Jones,Β 2000)Β canΒ onlyΒ driveΒ overΒ obstaclesΒ ofΒ heightsΒ that areΒ atΒ bestΒ aΒ fractionΒ ofΒ theΒ vehicleβsΒ bodyΒ length.Β Β Thus,Β someΒ terrainsΒ areΒ notΒ accessibleΒ toΒ wheeledΒ vehicles.Β Β Conversely,Β leggedΒ orΒ limbedΒ locomotionΒ hasΒ theΒ possibilityΒ toΒ provokeΒ minimumΒ reactionsΒ onΒ theΒ asteroidΒ surfaceΒ thatΒ couldΒ pushΒ theΒ robotΒ withΒ sufο¬cientΒ forceΒ toΒ reachΒ escapeΒ velocityΒ andΒ driftΒ intoΒ space.Β Β ItΒ alsoΒ facilitatesΒ achievementΒ ofΒ desiredΒ goal conο¬gurationsΒ thatΒ dealΒ withΒ newΒ complexΒ situations,Β ensuringΒ thatΒ aΒ robotβsΒ behaviorΒ doesnotΒ deviateΒ fromΒ aΒ stableΒ condition. InΒ thisΒ chapter,Β theΒ focusΒ isΒ onΒ gravity-independentΒ locomotionΒ approaches,Β technologiesΒ andΒ challengesΒ ofΒ roboticΒ mobilityΒ onΒ asteroids.Β RecommendationsΒ andΒ methodsΒ toΒ perform Β Β Β Β Fig.Β 1.Β MosaicΒ ofΒ ErosΒ Β©AppliedΒ PhysicsΒ Lab/JHUΒ Β andΒ AsteroidΒ 25143Β ItokawaΒ Β©JAXA/ISAS…