Gravity-Independent Locomotion: Dynamics and Position-Based Control of Robots on Asteroid Surfaces

Gravity-Independent Locomotion: Dynamics and Position-Based Control of Robots on Asteroid Surfaces

InΒ Β recentΒ Β years,Β Β theΒ Β scientificΒ Β communityΒ Β hasΒ Β hadΒ Β anΒ Β increasedΒ Β interestΒ Β inΒ Β exploringΒ theΒ asteroids ofΒ theΒ solarΒ systemΒ (JAXA/ISAS,Β Β 2003;Β JHU/APL,Β Β 1996;Β NASA/JPL,Β Β 2007).Β TechnologicalΒ advancesΒ haveΒ enabledΒ mankindΒ forΒ the firstΒ timeΒ toΒ takeΒ aΒ closerΒ lookΒ atΒ theseΒ smallΒ solarΒ systemΒ objectsΒ throughΒ sensorsΒ andΒ instrumentsΒ ofΒ roboticΒ deepΒ spaceΒ probes.Β However,Β mostΒ ofΒ theseΒ spaceΒ probeΒ missionsΒ haveΒ focusedΒ onΒ theΒ reconnaissance ofΒ theΒ asteroids’ surfacesΒ andΒ theirΒ compositionalΒ analysisΒ fromΒ aΒ distance.Β LittleΒ attentionΒ hasΒ beenΒ givenΒ toΒ locomotionΒ onΒ theirΒ surfacesΒ withΒ aΒ mobileΒ roboticΒ system,Β dueΒ toΒ theΒ challengingΒ gravityΒ conditionsΒ foundΒ inΒ theseΒ smallΒ solarΒ systemΒ bodies. InΒ smallΒ bodiesΒ likeΒ asteroids,Β theΒ gravitational fieldsΒ areΒ substantiallyΒ weakerΒ thanΒ thoseΒ ofΒ EarthΒ orΒ Mars,Β thereforeΒ theΒ likelihoodΒ ofΒ aΒ robot’sΒ unintentionalΒ collisionΒ withΒ theΒ surfaceΒ whileΒ attemptingΒ aΒ movementΒ isΒ substantiallyΒ higher.Β Β Β InΒ oneΒ ofΒ theΒ latestΒ missions,Β the JapaneseΒ HayabusaΒ spacecraftΒ carriedΒ onboardΒ aΒ smallΒ robotΒ namedΒ MINERVAΒ (Yoshimitsu etΒ al.,Β 2001)Β toΒ beΒ deployedΒ andΒ usedΒ toΒ exploreΒ theΒ asteroidΒ surface.Β TheΒ robotΒ wasΒ designedΒ withΒ aΒ singleΒ reactionΒ wheel,Β locatedΒ insideΒ ofΒ it,Β toΒ produceΒ theΒ necessaryΒ inertialΒ reactionΒ to move.Β ButΒ withΒ thisΒ systemΒ theΒ locationΒ ofΒ theΒ robotΒ whenΒ theΒ motionΒ isΒ dampedΒ outΒ isΒ veryΒ challengingΒ toΒ predictΒ orΒ control.Β Subsequently,Β inΒ orderΒ toΒ maximizeΒ theΒ scientificΒ returnΒ fromΒ anyΒ given missionΒ onΒ anΒ asteroid’sΒ surface,Β futureΒ missionsΒ mustΒ haveΒ theΒ abilityΒ toΒ conductΒ stableΒ mobilityΒ andΒ accurateΒ positioningΒ onΒ theΒ roughΒ terrain. InΒ theΒ robotics field,Β limbedΒ locomotionΒ isΒ broadlyΒ recognizedΒ asΒ superiorΒ inΒ itsΒ capabilityΒ toΒ traverseΒ terrainsΒ withΒ irregularitiesΒ suchΒ asΒ obstacles,Β cliffsΒ andΒ slants.Β ExoticΒ typesΒ ofΒ wheeledΒ roversΒ (BaresΒ etΒ al.,Β 1999;Β Wilcox &Β Jones,Β 2000)Β canΒ onlyΒ driveΒ overΒ obstaclesΒ ofΒ heightsΒ that areΒ atΒ bestΒ aΒ fractionΒ ofΒ theΒ vehicle’sΒ bodyΒ length.Β Β Thus,Β someΒ terrainsΒ areΒ notΒ accessibleΒ toΒ wheeledΒ vehicles.Β Β Conversely,Β leggedΒ orΒ limbedΒ locomotionΒ hasΒ theΒ possibilityΒ toΒ provokeΒ minimumΒ reactionsΒ onΒ theΒ asteroidΒ surfaceΒ thatΒ couldΒ pushΒ theΒ robotΒ withΒ sufficientΒ forceΒ toΒ reachΒ escapeΒ velocityΒ andΒ driftΒ intoΒ space.Β Β ItΒ alsoΒ facilitatesΒ achievementΒ ofΒ desiredΒ goal configurationsΒ thatΒ dealΒ withΒ newΒ complexΒ situations,Β ensuringΒ thatΒ aΒ robot’sΒ behaviorΒ doesnotΒ deviateΒ fromΒ aΒ stableΒ condition. InΒ thisΒ chapter,Β theΒ focusΒ isΒ onΒ gravity-independentΒ locomotionΒ approaches,Β technologiesΒ andΒ challengesΒ ofΒ roboticΒ mobilityΒ onΒ asteroids.Β RecommendationsΒ andΒ methodsΒ toΒ perform Β Β Β Β  Fig.Β 1.Β MosaicΒ ofΒ ErosΒ Β©AppliedΒ PhysicsΒ Lab/JHUΒ Β andΒ AsteroidΒ 25143Β ItokawaΒ Β©JAXA/ISAS…
Robotic Systems for Radiation Therapy

Robotic Systems for Radiation Therapy

MedicalΒ Β roboticsΒ Β isΒ anΒ excitingΒ Β andΒ Β relativelyΒ newΒ Β field.Β RoboticsΒ Β playsΒ Β anΒ importantΒ roleΒ in medical engineering.Β Β MedicalΒ Β robotsΒ Β wereΒ initiallyΒ Β usedΒ Β inΒ theΒ 1980s,Β inΒ theΒ fieldΒ ofΒ urology. RoboticΒ Β armsΒ Β wereΒ Β developedΒ andΒ Β usedΒ Β  forΒ Β prostateΒ Β resection.Β TheyΒ Β canΒ Β alsoΒ Β beΒ Β highly specializedΒ andΒ Β assistΒ Β inΒ diagnosingΒ andΒ Β treatingΒ patients.Β WhileΒ Β thereΒ Β isΒ stillΒ Β muchΒ Β more workΒ Β toΒ beΒ done,Β Β usingΒ Β robotsΒ Β canΒ enhanceΒ medicalΒ treatmentsΒ inΒ termsΒ Β ofΒ bothΒ Β theΒ quality andΒ Β accessibilityΒ ofΒ Β care.Β Β UsingΒ  robotsΒ Β canΒ  helpΒ Β reduceΒ humanΒ errorΒ Β andΒ Β bringΒ Β highly specializedΒ informationΒ toΒ remoteΒ areasΒ Β withoutΒ requiringΒ physicians’ directΒ Β intervention. InΒ radiation therapy,Β high-energy radiation…
Novel Assistive Robot for Self-Feeding

Novel Assistive Robot for Self-Feeding

AssistiveΒ robots,Β Β withΒ Β whichΒ Β usersΒ Β canΒ interactΒ directly,Β haveΒ Β attractedΒ worldwideΒ attention. TheyΒ Β canΒ Β assistΒ Β peopleΒ withΒ Β disabilitiesΒ andΒ Β olderΒ Β personsΒ inΒ theΒ Β activitiesΒ ofΒ dailyΒ Β living. AssistiveΒ robotsΒ couldΒ beΒ employedΒ forΒ improving quality ofΒ lifeΒ asΒ theyΒ canΒ beΒ adjusted accordingΒ toΒ demographicΒ changes.Β ThereΒ Β areΒ Β severalΒ Β crucialΒ Β issuesΒ Β toΒ beΒ consideredΒ with regardΒ toΒ Β theseΒ Β robots,Β Β suchΒ Β asΒ Β customizingΒ themΒ Β accordingΒ toΒ Β theΒ Β specificΒ Β cultureΒ ofΒ the usersΒ Β asΒ wellΒ asΒ ensuringΒ cost-effectivenessΒ (Mann,Β Β 2005). InΒ Korea,Β Β theΒ officialΒ numberΒ ofΒ registeredΒ peopleΒ withΒ Β disabilitiesΒ dueΒ Β toΒ illnesses,Β Β injuries, andΒ Β theΒ naturalΒ agingΒ Β processΒ Β hasΒ alreadyΒ exceededΒ twoΒ millionΒ Β (EmploymentΒ DevelopmentΒ Institute,Β 2009).Β MoreΒ thanΒ Β one-thirdΒ ofΒ theseΒ disabledΒ peopleΒ areΒ theΒ elderly.Β Moreover,Β dueΒ toΒ longerΒ Β lifeΒ spansΒ andΒ Β aΒ declineΒ Β inΒ birthrate,Β theΒ elderlyΒ makeΒ Β upΒ overΒ 10%Β ofΒ theΒ populationΒ inΒ Korea.Β AsΒ aΒ result,Β Β effectiveΒ caregivingΒ withΒ restrictedΒ resourcesΒ isΒ anΒ urgentΒ problem. InΒ Β orderΒ toΒ Β achieveΒ Β efficientΒ Β caregivingΒ forΒ Β peopleΒ withΒ Β disabilitiesΒ andΒ Β elderlyΒ persons, caregiversΒ shouldΒ physically interactΒ withΒ theΒ people.Β ForΒ example,Β caregiversΒ haveΒ toΒ assist peopleΒ inΒ Β performingΒ theΒ Β routineΒ activitiesΒ ofΒ  theirΒ Β dailyΒ Β lives,Β Β suchΒ Β asΒ Β eating,Β Β changing…
Target Point Manipulation Inside a Deformable Object

Target Point Manipulation Inside a Deformable Object

TargetΒ Β pointΒ Β manipulationΒ insideΒ Β aΒ deformableΒ objectΒ Β byΒ aΒ roboticΒ Β systemΒ Β isΒ necessaryΒ in manyΒ Β medicalΒ andΒ Β industrialΒ applicationsΒ suchΒ Β asΒ breastΒ Β biopsy,Β Β drugΒ injection,Β Β suturing, preciseΒ Β machiningΒ ofΒ deformableΒ objectsΒ etc.Β However,Β thisΒ isΒ aΒ challengingΒ problemΒ because ofΒ theΒ Β difficultyΒ ofΒ imposingΒ theΒ Β motionΒ ofΒ theΒ Β internalΒ targetΒ Β pointΒ Β byΒ aΒ finiteΒ Β numberΒ of actuationΒ pointsΒ locatedΒ Β atΒ theΒ Β boundaryΒ ofΒ theΒ Β deformableΒ object.Β Β InΒ addition,Β thereΒ Β exist severalΒ Β otherΒ Β importantΒ manipulativeΒ operationsΒ thatΒ Β dealΒ Β withΒ Β deformableΒ objectsΒ Β suchΒ Β as wholeΒ Β bodyΒ Β manipulationΒ Β [1],Β Β shapeΒ Β changingΒ Β [2],Β Β biomanipulationΒ Β [3]Β Β andΒ Β  tumor manipulationΒ [4]Β thatΒ haveΒ Β practicalΒ applications.Β TheΒ mainΒ Β focusΒ ofΒ thisΒ chapterΒ isΒ theΒ target pointΒ manipulation insideΒ aΒ deformableΒ object.Β ForΒ instance,Β aΒ positioningΒ operationΒ called linkingΒ Β inΒ Β theΒ Β manufacturingΒ ofΒ seamlessΒ garmentsΒ  [5]Β requiresΒ manipulationΒ ofΒ internal pointsΒ ofΒ deformableΒ objects.Β MatingΒ ofΒ aΒ flexibleΒ partΒ inΒ electricΒ industry alsoΒ resultsΒ inΒ the…
Modular Robotic Approach in Surgical Applications– Wireless Robotic Modules and a Reconfigurable Master Device for Endoluminal Surgery

Modular Robotic Approach in Surgical Applications– Wireless Robotic Modules and a Reconfigurable Master Device for Endoluminal Surgery

TheΒ trend inΒ surgicalΒ robotsΒ isΒ movingΒ fromΒ traditionalΒ master-slaveΒ robotsΒ toΒ miniaturized devicesΒ Β Β forΒ Β screeningΒ andΒ Β simpleΒ Β Β surgicalΒ operationsΒ Β (Cuschieri,Β A.Β Β 2005).Β ForΒ Β example, capsuleΒ endoscopyΒ (Moglia,Β  A.Β 2007)Β hasΒ beenΒ conductedΒ worldwideΒ overΒ theΒ lastΒ fiveΒ years withΒ Β successfulΒ outcomes.Β Β ToΒ Β enhanceΒ theΒ Β dexterityΒ ofΒ Β commercialΒ endoscopicΒ capsules, capsuleΒ  locomotionΒ hasΒ Β beenΒ Β investigatedΒ usingΒ Β Β leggedΒ Β Β capsulesΒ (Quirini,Β M.Β Β 2008)Β and capsulesΒ drivenΒ byΒ externalΒ magneticΒ fieldsΒ (Sendoh,Β M.Β 2003;Β Ciuti,Β G.Β 2010;Β Carpi,Β Β F.Β 2009).Β EndoscopicΒ capsulesΒ withΒ Β miniaturizedΒ armsΒ Β haveΒ Β alsoΒ Β beenΒ Β studiedΒ toΒ Β determineΒ their potentialΒ forΒ useΒ inΒ biopsyΒ Β (Park,Β Β S.-K.Β 2008).Β Furthermore,Β newΒ Β surgicalΒ proceduresΒ known asΒ naturalΒ orificeΒ transluminalΒ endoscopicΒ surgeryΒ (NOTES)Β andΒ Β SingleΒ PortΒ AccessΒ surgery areΒ acceleratingΒ theΒ developmentΒ ofΒ innovativeΒ endoscopicΒ devicesΒ Β (Giday,Β Β S. 2006;Β Bardaro, S.J.Β 2006).Β TheseΒ advancedΒ surgicalΒ devicesΒ showΒ potential forΒ theΒ future…